
Tasks and combinators
Modules of constrained workflow management

Dávid Juhász

Eötvös Loránd University, Budapest

Dávid Juhász – Tasks and Combinators 2 of 11

Content

❧Motivation and principles
❧Hierarchical distributed workflows
❧Domain-specific language

Dávid Juhász – Tasks and Combinators 3 of 11

Programming CPS

❧Independent, side effect free modules
– Predictive model, decision making under uncertainty
– Error in abstraction gives rise to stochasticity
– Failure in hardware, software, network
– Changing conditions in the physical world

Dávid Juhász – Tasks and Combinators 4 of 11

Cyber-Physical Systems
as workflows
❧Hierarchical, loosely-coupled building blocks
❧Smoothly executing in a distributed environment
❧Testability, dependability
❧Dynamic construction of workflows
❧Tasks are first class citizens

Dávid Juhász – Tasks and Combinators 5 of 11

Detect deviations
from modelControl

actuator

Read
sensor

Specify
constraint

Correction
module

Dávid Juhász – Tasks and Combinators 5 of 11

Dávid Juhász – Tasks and Combinators 6 of 11

Task-oriented programing

Dávid Juhász – Tasks and Combinators 7 of 11

Combinators: basic examples

Sequential constructor

Parallel constructor

Specificators

Remote execution with implicit
transfer of code

Distributed workflow

Dávid Juhász – Tasks and Combinators 8 of 11

Controlling a (sub-)system

Unstable values are raised in sequences

Reading a sensor

Reacting on unstable values
using a controller

Hierarchical workflow

Dávid Juhász – Tasks and Combinators 9 of 11

Specificator

Sequential
constructor

Parallel
constructor

Unstable
values

Actively correlating
model and reality

Dávid Juhász – Tasks and Combinators 9 of 11

Dávid Juhász – Tasks and Combinators 10 of 11

Domain-specific language
Kettle_control.set_coil(on) >>|
par [rec Kettle_control.read_thermometer(i) >>= \t →
 continue with t
 | i ← [1,2,3]]
controlled by \(acc, ts) →
 average(ts) >>= \t →
 if
 t > 97 →
 Kettle_control.set_coil(off) >>|
 t;
 acc – t > error_threshold →
 Kettle_control.set_alarm(on) >>|
 Kettle_control.set_coil(off) >>|
 (error, t)
 else
 continue with (t, t)
with accumulator 0 @ [kettle].

Dávid Juhász – Tasks and Combinators 11 of 11

❧Paradigm based on side effect free modules
– Scalable, modular, compositional
– Testable, dependable
– Task-oriented programming
– Model-based prediction

Summary

❧Hierarchical distributed workflows
● CPS-specific combinators
● Extensible: Domain-specific combinators

❧Domain-specific language
● Semantics 1.0
● Syntax may evolve
● DSL embedded in Erlang

	Slide 1
	Content
	Programming CPS
	Cyber-Physical Systems as workflows
	Slide 5
	Task-oriented programing
	Combinators: basic examples
	Controlling a (sub-)system
	Slide 9
	Domain-specific language
	Summary

