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Content

❧Motivation and principles
❧Hierarchical distributed workflows
❧Domain-specific language
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Programming CPS

❧Independent, side effect free modules
– Predictive model, decision making under uncertainty
– Error in abstraction gives rise to stochasticity
– Failure in hardware, software, network
– Changing conditions in the physical world
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Cyber-Physical Systems
as workflows
❧Hierarchical, loosely-coupled building blocks
❧Smoothly executing in a distributed environment
❧Testability, dependability
❧Dynamic construction of workflows
❧Tasks are first class citizens
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Task-oriented programing
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Combinators: basic examples

Sequential constructor

Parallel constructor

Specificators

Remote execution with implicit 
transfer of code

Distributed workflow
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Controlling a (sub-)system

Unstable values are raised in sequences

Reading a sensor

Reacting on unstable values 
using a controller

Hierarchical workflow
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Specificator

Sequential 
constructor

Parallel 
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Unstable 
values

Actively correlating 
model and reality
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Domain-specific language
Kettle_control.set_coil(on) >>|
par [rec Kettle_control.read_thermometer(i) >>= \t →
     continue with t
    | i ← [1,2,3]]
controlled by \(acc, ts) →
  average(ts) >>= \t →
  if
    t > 97 →
      Kettle_control.set_coil(off) >>|
      t;
    acc – t > error_threshold →
      Kettle_control.set_alarm(on) >>|
      Kettle_control.set_coil(off) >>|
      (error, t)
    else
      continue with (t, t)
with accumulator 0 @ [kettle].
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❧Paradigm based on side effect free modules
– Scalable, modular, compositional
– Testable, dependable
– Task-oriented programming
– Model-based prediction

Summary

❧Hierarchical distributed workflows
● CPS-specific combinators
● Extensible: Domain-specific combinators

❧Domain-specific language
● Semantics 1.0
● Syntax may evolve
● DSL embedded in Erlang
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